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Optical and radar imagery has been shown to be useful for classifying wetland types
and surrounding non-wetland classes such as forest and agriculture. Throughout the
literature, recommendations have been made that optical and radar image variables
together should improve overall and individual class accuracies. object-based image
analysis (OBIA) uses multiple data types to segment objects representing land cover
entities that are subsequently classified. There are few studies that have utilized
optical and polarimetric radar variables together in OBIA to map wetland classes.
This research investigated the potential to combine WorldView-2 optical image
variables with fully polarimetric Radarsat-2 image variables in OBIA classification
of wetland type. With the addition of radar polarimetric variables, classification
accuracy improved for the wetland classes of fen, bog, and swamp over the use of
optical imagery alone; specifically the addition of Cloude–Pottier (CP) variables of
entropy, anisotropy, and alpha angle improved the classification of fen, and the
addition of horizontal transmit and horizontal receive (HH) and horizontal transmit
and vertical receive (HV) backscatter intensity improved the classification of swamp.

1. Introduction

For wetland analysis and mapping, optical imagery has been shown to be useful in
classifying wetland types (e.g. bog, fen, marsh, swamp) (Dronova et al. 2012; Zhang
et al. 2011; Belluco et al. 2006), delineating water and land boundaries (Rivero et al.
2009), and deriving biophysical parameters such as biomass (Mutanga, Adam, and Cho
2012; Dillabaugh and King 2008), among others.

Radar remote sensing can also be used to identify wetlands and wetland character-
istics. It has been shown to detect herbaceous wetlands (Pope et al. 1997) and to indicate
standing snags in open swamps or emergent vegetation (e.g. reeds) (Karszenbaum et al.
2000; Kandus et al. 2001). Multi-polarized radar has been shown to be better correlated
than single polarizations with soil moisture and inundation (Lang and Kasischke 2008;
Dobson and Ulaby 1988), and many wetland types (bog, fen, saline, and freshwater
marsh, etc.) have been discriminated (Evans et al. 2014; Marechal et al. 2012; Lu and
Kwoun 2008; Li and Chen 2005; Racine, Bernier, and Ouarda 2005). Polarimetric
decomposition variables have been used to categorize wetland types (Touzi,
Deschamps, and Rother 2007), map macrophyte species (Sartori et al. 2011), and indicate
flooded vegetation (Schmitt and Brisco 2013). Relationships between C-band horizontal
transmit and horizontal receive (HH) and vertical transmit and vertical receive (VV)
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backscatter and soil moisture and inundation have been found to be positive and linear
(Lang and Kasischke 2008). Several studies have utilized a graphical relationship of
polarization response at various incidence angles to discriminate wetland type classes
(Marti-Cardona et al. 2010; Horritt et al. 2003; Baghdadi et al. 2001).

Throughout the literature it has been suggested that combining optical and radar
imagery should improve overall and individual class accuracies (Adam, Mutanga, and
Rugege 2010; Silva et al. 2008; Henderson and Lewis 2008; Ozesmi and Bauer 2002;
Kasischke, Melack, and Dobson 1997). However, to date most studies have assessed
wetlands using either optical or radar imagery.

Object-based image analysis (OBIA) is one technique that can use multiple data
types to create objects of land cover entities which can then be classified. In previous
research it has been found that OBIA classifications are better representations of land
cover entities as humans perceive them than pixel-based classifications (Meneguzzo,
Liknes, and Nelson 2013; Pasher et al. 2013; Brenner, Christman, and Rogan 2012;
Dronova et al. 2012; Duro, Franklin, and Dube 2012; Dingle Robertson and King 2011;
Burnett and Blaschke 2003). OBIA has been used with optical imagery to map salt marsh
plants and to derive vegetation zones, patches, and surface water channels (Moffett and
Gorelick 2013; Ouyang et al. 2011). Dingle Robertson and King (2011), in a precursor to
this study, evaluated Landsat OBIA and pixel-based land cover maps in temporal
analysis of land cover change, including for wetlands.

OBIA has been used with radar imagery, including fully polarimetric data, to map
water/land boundaries and wetland types (Evans and Costa 2013; Li et al. 2012). It has also
been used with optical imagery combined with single polarized radar imagery (e.g.
RADARSAT-1, JERS-1) to map wetland types (Durieux et al. 2007; Grenier et al. 2007)
and to map the temporal variability in aquatic plant communities (Silva, Costa, andMelack
2010). Only a few studies have utilized both optical image variables and fully polarimetric
radar variables together with OBIA to assess wetland type classes, albeit at different
wavelengths and spatial resolutions (e.g. ALOS PALSAR L-band radar decomposition
variables with AVHRR surface temperature and NDVI from ENVISAT MERIS
(Dabrowska-Zielinska et al. 2009); S- and X-band airborne radar decomposition variables
with NDVI from Landsat TM/ETM+ and very high-resolution aerial imagery (Van Beijma,
Comber, and Lamb 2014); ALOS PALSAR L-band with very high-resolution four band
aerial imagery (30 cm to 50 cm) (Kloiber et al. 2015); and TerraSAR-X radar imagery with
Landsat TM, KOMPSAT-2, MODIS, and aerial optical imagery (Muster et al. 2013).

Given the known spectral reflectance and microwave backscatter responses to vege-
tation composition and structure variations that are associated with major wetland types,
and the tendency of vegetation communities in each wetland type to be spatially
distributed as distinct entities, the objective of this research was to determine if combin-
ing high-resolution WorldView-2 optical and polarimetric Radarsat-2 image variables in
OBIA would result in improved overall land cover classification accuracy and an
improvement in the accuracy of individual wetland types. This article is part of a larger
study on assessment of wetlands using remote sensing and GIS within the Ontario
Wetland Evaluation System (OWES) as summarized in Dingle Robertson (2014).

2. Study areas

This research was carried out in eastern Ontario, Canada (Figure 1), a spatially diverse
region of approximately 15,500 km2 including agricultural, forest, and urban lands.
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Wetland complexes are distributed throughout the region and predominantly contain
swamps and marshes with fewer bogs and fens. For the purposes of this research, the
Canadian National Wetlands definitions were used (excluding shallow water) (National
Wetlands Working Group 1997). Bog includes: peat-covered areas and/or peat-filled
depressions; a surface carpet of mosses (Sphagnum spp.); closed drainage, strongly
acidic surface waters, and peat; and it is treed or treeless (tree cover does not exceed
25%). Fen includes: poorly to moderately decomposed peat; mosses with narrow pH
tolerance (sphagnum may or may not be present); a dominant component of sedges
(Carex spp.) with grasses (Poaceae spp.), and reeds (Phragmites spp.) in local pools;
often low- to medium-height shrub cover or sparse tree cover (white cedar (Thuja

Figure 1. Eastern Ontario and the position of the four wetland complex study areas (red squares).
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occidentalis L), tamarack (Larix laricina (Du Roi) K.Koch)); water and peat that are less
acidic than bogs; and a layer of shrubs from the heather family (Ericaceae spp.). Swamps
include: wooded wetlands (≥25% cover of trees and tall shrubs); standing to gently
flowing water (pools and channels indicate subsurface flow); characteristic flooding in
spring with relic pools later in summer; sometimes with a significant low shrub com-
munity, but a tall shrub component must be present/dominant. They can be subclassified
as treed swamps or shrub swamps; treed swamps include conifer swamps (white cedar,
tamarack, black spruce (Picea mariana (Mill.) Britton, Stems & Poggenburg)) and
deciduous swamps (silver maple (Acer Saccharinum L.), elm (Ulmus L.), black ash
(Fraxinus nigra Marshall), and yellow birch (Betula alleghaniensis Britt.)). Marshes
include: non-woody emergent vegetation (rushes (Juncus spp.), reeds (Typha spp.),
sedges with anchored floating plants) and submergent vegetation; wet areas that are
periodically and/or permanently inundated; and zones/mosaics of vegetation that are
interspersed with channels or pools of water. Although variability between study areas
was present, Figure 2(a)–(d) shows examples representing typical conditions in bog (a),
fen (b), marsh (c), and swamp (d).

Four wetland complexes were selected for study including Loch Garry Wetland
Complex (‘Loch Garry’), Marlborough Forest Wetland Complex – which, despite
being called a forest has large areas of marsh, fen, and swamp present

Figure 2. Photographic examples representing typical conditions in bog (a), fen (b), marsh (c),
and swamp (d).
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(‘Marlborough’), Mer Bleue Conservation Area (‘Mer Bleue’), and Westport-Nelson
Wetland Complex (‘Westport’) (Figure 1). These cumulatively represented approxi-
mately 6200 ha. Multiple wetland complexes were selected to represent the diversity
of conditions across eastern Ontario. Previous studies have generally been limited to one
or two wetlands or wetland complexes (e.g. Van Beijma, Comber, and Lamb 2014;
Dronova et al. 2012; Ricaurte et al. 2012; Jiao et al. 2011; Castaneda and Ducrot 2009;
Durieux et al. 2007; Grenier et al. 2007; Touzi, Deschamps, and Rother 2007; Wright and
Gallant 2007; Li and Chen 2005; Bernier et al. 2003), leading to questions about the
potential for spatial extension of the results, while few studies have attempted to
concurrently analyse and compare classifications from multiple wetland complexes
(e.g. Mwita et al. 2013).

Situated north of Cornwall, Ontario, Loch Garry is found within fragmented farmland
and located along the shores of a large lake, which is 1 to 5 m deep and covers about
3.8 km2 (380 ha). The wetland complex is about 1281 ha within the Garry River
watershed (3400 ha), and contains three wetland types: fen, marsh, and swamp. The
lake is hydrologically isolated, with water being supplied to the Garry River watershed
through precipitation.

Marlborough is approximately 1099 ha in area and is located southwest of Ottawa,
within less fragmented farmland but near industrial land uses (e.g. quarrying). It is
comprised of swamp, marsh, and fens containing rare orchid species. This complex is
recreationally active with extensive hunting, all-terrain vehicle, and snowmobile use.

Mer Bleue is within the city limits of Ottawa, with extensive suburban development
to the north and surrounded by farmland to the south and east. This well-studied area of
approximately 3500 ha is a wetland complex of international importance (Ramsar, 2006).
The bog area is approximately 7700 years old and representative of a northern boreal
landscape, including flora and fauna species that are common to boreal bogs. There are
also extensive marshes located in this area.

Westport is located on the Frontenac Axis, approximately 120 km southwest of
Ottawa and 60 km north of Kingston. The axis is an extension of the Canadian Shield
that divides the St. Lawrence lowlands and the Great Lakes lowlands. Bedrock is often
exposed at the surface, or covered with thin soils (Keddy 1995). The area was forested in
the past, but logging has depleted most areas of old-growth (Keddy 1995).

3. Data

Table 1 lists details of the high-resolution WorldView-2 and Radarsat-2 imagery used in
this research. A generalized description of these imagery types and justification for their
selection follows.

WorldView-2 imagery was selected for detailed, high-resolution within-wetland
complex analysis and mapping. The nominal ground pixel size is 46 cm and 1.8 m for
the PAN (panchromatic) band and the four multispectral bands, respectively, over an
image area of approximately 18 km × 18 km. The spectral bands were blue-green (450–
510 nm), green (510–580 nm), red (630–690 nm), and NIR (770–895 nm). Additional
spectral bands available with Worldview-2 were not used due to higher cost and because
it was not certain whether they would provide additional non-redundant information
since spectral bands within the same portion of the spectrum are commonly highly
correlated. The data were delivered corrected to the world geodetic survey 1984 datum
(WGS84) and the Universal Transverse Mercator (UTM) coordinate system (zone 18,
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row T). The accuracy of these corrections was assessed using the Ontario road vector file
and control points at road intersections. The images were aligned to an Ontario road
vector file using a first-order polynomial transformation and nearest neighbour resam-
pling, resulting in an overall root mean square positional error (RMSE) of less than ½
pixel.

Radarsat-2 is a C-band sensor with advanced polarimetric capabilities and multiple
possible resolutions and image swaths that have proven advantageous in wetland map-
ping (Henderson and Lewis 2008; Touzi, Deschamps, and Rother 2007). Polarimetric
radar detects the polarization properties of a surface. Surfaces respond to incident
polarized radiation by reflecting partially polarized and depolarized radiation (Van Zyl,
Zebker, and Elachi 1987). Fully polarimetric radar systems measure surface character-
istics for all configurations (e.g. HH, VV, HV, VH). By distinguishing between different
surface characteristics, they improve upon data acquired in single polarizations. Stokes
parameters describe the polarization state and phase. Coherency matrices are the second-
order statistical representation of the variations and correlations of that polarization state
and phase (Van Zyl, Zebker, and Elachi 1987).

Radarsat-2 imagery was acquired in descending mode in fine quad-polarization.
Steep-incidence angle imagery was desired to discriminate between wetland types
based on previous study results (Baghdadi et al. 2001). However, multiple angles were
acquired to test the effect of incidence angle on wetland type discrimination under the
diverse wetland conditions of this study. The nominal ground pixel size is theoretically
8 m at the steepest incidence angle (18.4°) and was therefore expected to be larger than
this for the images shown in Table 1. In two cases, very shallow angle imagery (FQ 28,
29) was acquired when other prioritized organizations needed steep-angle imagery.
Lower FQ numbers (e.g. 1, 2) relate to steeper incidence angle-acquired data, and higher
FQ numbers (e.g. 28, 29) relate to shallower incidence angle-acquired data.

A 10 m digital elevation model (DEM, Version 2.0.0, horizontal accuracy ±10 m;
vertical accuracy ±5 m, Land Information Ontario (LIO), Ontario Ministry of Natural
Resources (OMNR), 2006) was also obtained; although eastern Ontario is relatively flat
(less than 200 m change across the region). It was thought that the addition of elevation
data may indicate a difference for certain wetland types (e.g. raised bog or marshes
downslope of upland).

4. Methods

4.1. Field validation data acquisition

In the spring and summer of 2010 and 2011, validation sites of approximately
90 m × 90 m were established in the four study areas to obtain representative samples
of each of the wetland and non-wetland land cover types. This site size was selected to
represent about 3 × 3 Landsat pixels as Landsat 5 TM data were used in the broader
study described in Dingle Robertson (2014). A visual survey was made of the land cover
types present at each site and a global positioning system (GPS) waypoint was taken at
the edge of the site using a Trimble Juno SB (expected real time accuracy of approxi-
mately 2–5 m (www.trimble.com 2013)). Efforts were made to accumulate multiple
samples for each land cover type (e.g. 15–50 (Foody 2002)), but for the rarer wetland
types of fen and bog it was often impossible to find more than one or two spatially
disparate examples within a particular wetland complex. All four wetland types were also
not observed, nor known to exist from previous OWES surveys in the wetland
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complexes. Eighty-five wetland sites were observed in the field (18 bog, 11 fen, 37
marsh, and 19 swamp) and an additional 71 field sites of upland and water were also
recorded.

4.2. Extraction of radar image variables

A 7 × 7 enhanced Lee adaptive filter was applied to the raw radar data to reduce speckle
while maintaining edges or sharp features in the image. This filter and window size were
selected following De Leeuw (2009), who found that they outperformed about 20 other
speckle filter/window size combinations and had speckle reduction rates up to 70%.

The radar backscatter coefficient is an indication of the average backscattered power
in relation to the incident power and is represented as σº, measured in decibels (dB)
(Ulaby, Haddock, and Austin 1988). HV and HH σº images were derived from the
acquired radar images and samples were extracted at field validation locations for all
land cover types at all study areas. These data were plotted on scatter graphs to determine
whether wetland type could be distinguished based upon HH and HV backscatter.

Several methods have been developed to extract different representations (variables)
of scattering mechanisms from the coherency matrix (Liao and Wang 2010) of polari-
metric radar data. These variables can then be used in land cover classification. One
common method is the Cloude–Pottier (CP) decomposition (Schmitt and Brisco 2013;
Sartori et al. 2011; Liao and Wang 2010; Touzi, Deschamps, and Rother 2007; Cloude
and Pottier 1997, 1996). Targets contain not only radar response but speckle (noise) and
random scattering (from surface and volume components); therefore analysis to deter-
mine the underlying scattering properties of the target requires a multivariate statistical
description through matrix mathematics (Cloude and Pottier 1996). The resultant CP
variables entropy, anisotropy, and alpha angle relate to the target surface, volume, and
double-bounce/multiple scattering mechanisms.

Entropy (H, range = 0–1) represents the degree of randomness. H = 0 indicates a non-
depolarizing scattering process and generally relates to one dominant scattering mechan-
ism, while H = 1 relates to depolarizing surfaces (Liao and Wang 2010; Cloude and
Pottier 1997, 1996). Low entropy is expected for open water and a marsh/water combi-
nation that is dominated by surface scattering. Entropy is expected to increase with
increasing vegetation structural complexity; medium entropy was expected to represent
bog and fen vegetation, and high entropy was expected to represent swamp and upland
vegetation (Touzi, Deschamps, and Rother 2007).

Anisotropy (A, range = 0–1) is a measure of the difference between the second and
third scattering mechanisms. When A = 0 the two mechanisms are mixed in equal
proportions and when A is close to 1, the second scattering mechanism is dominant
over the third. This provides information complementary to entropy and allows for
interpretation of the relative contributions of the types of scattering mechanism. For
example, low anisotropy with high entropy may be indicative of both volume and
double-bounce scattering mechanisms as found with swamps (Sartori et al. 2011;
Touzi, Deschamps, and Rother 2007)

Alpha angle (α) identifies the dominant scattering mechanism (Cloude and Pottier
1997). Low α values (0–40º) indicate surface scattering, medium values (40–52.5º) are
representative of volume scattering, and high values (e.g. close to 90º) indicate double-
bounce/multiple scattering (Banks et al. 2014; Liao and Wang 2010; Cloude and Pottier
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1997, 1996). Dense canopies of grasses and sedges result in mean alpha close to 45° and
are representative of predominantly volume scattering (Sartori et al. 2011).

The backscatter images (HH, HV, VV) and the three CP decomposition variable
images were geo-corrected using NEST4C-1.1 (European Space Agency) allowing for
spatial cross-referencing to the validation data, and for use in segmentation and classi-
fication with the geo-corrected optical imagery.

4.3. Object-based image analysis

OBIA has two key processing steps: 1) segmenting imagery and other ancillary data into
objects representing relative spatial homogeneity; and 2) classifying the segmented
objects as land cover classes of interest. OBIA for wetland type classes was completed
using eCognition Developer 64 (8.64) (segmentation) and IDRISI Taiga (C4.5 decision
tree classification (Quinlan 1990)).

4.3.1. Segmentation of objects

The technical objective in segmentation is to define objects that have minimized within-
object variability and maximized between-object variability. The creation of objects from
individual pixels is based upon the spectral and spatial properties of neighbouring pixels
(Burnett and Blaschke 2003). Multi-resolution segmentation was selected for this
research, as Marpu et al. (2010) showed that this algorithm was one of the two best
from a comparison of 12 segmentation algorithms in terms of positional accuracy of
segmented boundaries of land cover objects. Data input to the segmentation process
included the four Worldview-2 spectral bands and the DEM. Tests with the addition of
the radar variables in the segmentation process did not improve upon, or refine, the
overall selection of the segmentation parameters. Therefore, radar image variables were
not included in the segmentation testing stage.

The key parameter in multi-resolution segmentation is a unit-less variable of ‘scale’
that is related to the image pixel size. Additional parameters of ‘colour’ (the pixel value
(e.g. DEM; spectral band brightness) and ‘shape’ (the geometric characteristics of the
segmented features (Laliberte et al. 2004), which is further defined by boundary
‘smoothness’ and feature ‘compactness’), were also tested.

To determine the best scale, shape, and compactness values, most studies have fol-
lowed a ‘trial and error’ process using visual comparison of how well the segmented object
boundaries align with interpreted objects (Aguilar, Saldana, and Aguilar 2013; Duro,
Franklin, and Dube 2012; Dingle Robertson and King 2011; Ouyang et al. 2011). More
recently, multiple Estimation of Scale Parameter (ESP) tools have been developed (e.g.
Dragut, Tiede, and Levick 2010) although they have not been widely used in the literature.

This research followed the ‘trial and error’ process, first for the scale parameter by
assessing the alignment of segmented wetland object boundaries with the water/land
interface, and of the alignment of segmented roads and fields with their visible edges in
the imagery. Additionally, test classification accuracies at a variety of scale values (with
unchanging shape and compactness values) were also compared. This analysis resulted in
the selection of an optimal scale parameter value of 45. In addition to image pixel size,
the size of the scale parameter is closely related to the class of interest. In the overall
research, (Dingle Robertson 2014) where more detailed classes such as vegetation
community forms or open water-type configuration were also investigated, smaller-
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scale values (e.g. 25) related to those specific class types rather than the coarser overall
class types of fen, bog, marsh, and swamp. For the selected scale value of 45, following
Tian and Chen (2007), an experimental design matrix (Table 2) was used to visually
evaluate segmentation results for each combination of the shape and compactness
parameter values. From these tests, the optimal OBIA parameter values were determined
as scale value = 45, shape value = 0.1, compactness value = 0.75.

4.3.2. Training data

For the classes of bog, fen, marsh, swamp, upland, and water, segmented objects selected
for classifier training were representative of the class spectral and/or spatial character-
istics at each study area. Training objects were selected using the field observation
information. For the uplands class, when multiple and spectrally different upland class
types existed adjacent to a wetland (e.g. forest, agricultural, urban), training was con-
ducted separately for each specific class. Following classification, these classes were
merged into a single upland class.

4.3.3. Classification of segmented objects

Classification of the segmented objects was conducted using a classification tree techni-
que (hereafter called classification tree analysis, CTA). Classification trees are non-
parametric and do not require assumptions regarding data distributions (Friedl and
Brodley 1997). Splits in the tree are determined through recursive partitioning of the
training data, where at each node the data are split until the remaining data are only from
one class or there is one acceptable level of class dominance (this endpoint being a leaf in
the decision tree). A commonly used algorithm is C4.5 (Quinlan 1990), which is a
univariate classifier with three splitting options (entropy, gain ratio, and GINI index).
Although there are alternative CTA algorithms available in other software packages,
research has shown that the type of CTA algorithm has little effect on the overall
classification accuracy (Zambon et al. 2006).

Research has also found that, in general, there is no statistical difference between the
splitting techniques; however, through testing, others have recommended use of the GINI
index (Duro, Franklin, and Dube 2012; Zambon et al. 2006). The GINI index measures
the impurity at a given node, which is at a maximum when all the pixels at the node are
equally distributed among all classes. The main splitting criterion is the reduction of that
impurity. This index is defined as

Table 2. Experimental design matrix showing shape/colour and compactness/smoothness tests
implemented after Tian and Chen (2007).

Compactness parameter (Compactness + Smoothness = 1.00)

Shape (1.00 – Colour) 0.25 0.50 0.75 0.90

0.10 Test 1 Test 2 Test 3 Test 4
0.25 Test 5 Test 6 Test 7 Test 8
0.50 Test 9 Test 10 Test 11 Test 12
0.75 Test 13 Test 14 Test 15 Test 16
0.90 Test 17 Test 18 Test 19 Test 20
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GINI tð Þ ¼
X

i

pi 1� pið Þ; (1)

● where pi is the proportion of class i at node t, determined by dividing the total
number of observations of class i by the total number of observations; and

● t represents any node (parent or child) at which a given split of the data is
performed (Apte and Weiss 1997).

The classifier starts by finding the two largest homogenous groupings within a data set
and isolates them as nodes. Subsequently, nodes are then iteratively split in the same
manner until further divisions are not possible (Zambon et al. 2006). Auto-pruning was
set at 1%, which removes any leaves with pixel counts less than or equal to 1% of the
total number of training pixels.

4.3.4. Classification accuracy assessment

The reference data samples were split into training and validation sets in a ratio of
30:70%, respectively (McCoy 2005; Foody 2002). Thematic map accuracies were
assessed using error matrices that compare validation data with the classification data
and their associated measures of producer’s accuracy (PA = 100% minus the percentage
errors of omission) and user’s accuracy (UA = 100% minus the percentage errors of
commission) (Foody 2002; Congalton and Green 1993). The kappa coefficient (κ) of
agreement, which indicates the accuracy of the map beyond that which would be
obtained through a random assignment of pixels to land cover classes, was also used
(Foody 2002; Congalton and Green 1993). For all OBIA classifications, because the
objects had been rasterized, the accuracy assessments were based upon selection of a
single pixel sample per validation object within the 90 m × 90 m (or larger) field-
assessed area (i.e. only one sample per validation object was used to maximize spatial
independence between samples). As the validation data are based on objects, and each
sample represented a field-visited location, the total number of samples was limited by
fieldwork time and access. The 30:70% ratio ensured a sufficiently large representative
training set, while maintaining a representative validation portion to generate accuracy
statistics.

5. Results

In the following sections, graphical (Figures) results are provided for example study
areas, with numerical (Tables) results provided for all areas.

5.1. Segmentation and classification of wetland type using optical imagery spectral
variables and elevation

As an example of the segmentation results, Figure 3(a), shows the objects created for
the Loch Garry wetland complex using the spring 2010 WorldView-2 image and
elevation as inputs with the optimal parameter values of scale = 45, shape = 0.1, and
compactness = 0.75. In Figure 3(b) the red outline shows the objects forming the
boundary of a known fen. Figure 3(c) shows the objects that follow a known water
channel and Figure 3(d) shows the objects following the shoreline of the lake, Loch
Garry. The lake is comprised of several objects instead of just one; this represents the
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qualitative aspect of the scale parameter choice where certain features (for example, a
large lake) may be over-segmented in order to capture smaller features of interest (for
example, the water channel in Figure 3(c)). The choice of scale parameter value is
highly dependent upon the importance of particular features to the research.

Figure 4 presents the Loch Garry CTA based on the optical imagery and DEM. Areas
that were observed in the field and were well classified (red circles) include the water
channel in the centre, the small lake to the northwest, and the shoreline of Loch Garry.
Known swamp areas around the lake in the northern part of the map and at the edge of
the upland in the southeast were well classified. Similarly, the large fen on the east side
of the lake was correctly classified.

Figure 3. (a) Colour infrared (CIR) composite of the spring 2010 Loch Garry subset showing the
created objects using a scale value of 45, shape value of 0.1, and compactness value of 0.75; and in
red (b) objects that make up the boundaries of a known fen; (c) objects that form a known channel;
and (d) objects that mimic the shoreline of Loch Garry.
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The total wetland area assessed in the last OMNR Loch Garry field-based evalua-
tion in 1983 was 543 ha, while the total wetland area classified using the CTA was
435 ha. Percentage cover estimates by class were: fen 23% (CTA) and 14% (field);
swamp 62% (CTA) and 40% (field); and marsh 15% (CTA) and 46% (field). Overall,
the CTA extents for swamp and fen were greater than the 1983 field-based OMNR
assessment while CTA marsh area was smaller. These differences could be related to
wetland dynamics over the ~28-year period; it is possible that marsh areas gradually
filled in with shrubs and trees to become swamp. For fen, the increases are harder to
justify; they could be related to encroachment of fen on Loch Garry. The differences
for all classes could also be related to the viewpoint from which the field-based
observers made their observations (obliquely and subject to spatial distortions) as
compared to remote sensing (vertically).

Table 3 shows the classification error matrix and accuracy statistics. The overall
accuracy was 86.5% with κ = 0.82. The average PA was 87.3% and the average UA was
91.7%. Water was the most accurately classified while marsh and swamp were the worst
classes in terms of PA and UA, respectively. The small sample size of the object-based
validation set means there is a degree of imprecision expected (potentially large con-
fidence intervals) in these results. However, field knowledge supports these classification
results, as larger areas were not erroneously classified.

Figure 4. Object-based CTA thematic classification of Loch Garry derived using 2010 spring
WorldView-2 and DEM data. Red circles show wetland areas that were well classified (confirmed
in the field). The map coverage corresponds to the area shown in Figure 3(a).
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Table 4 provides the classification accuracies for all four wetland complex study
areas (Loch Garry repeated from above) as derived using the optical and DEM data. The
area with the highest overall accuracy was Loch Garry (86.5%) and the area with the
lowest accuracy was Marlborough (70.0%). Over the four wetland complexes, fen had
the highest average PA (90.0%) and UA (75.0%) while bog had the lowest (PA = 65.9%;
UA = 50.3%). In relation to the literature for wetland type classification, these results
were comparable, as they fell within the typical overall accuracies of 71–92% (Evans
et al. 2014; Schmitt and Brisco 2013; Dribault, Chokmani, and Bernier 2012; Ricaurte
et al. 2012; Dronova, Gong, and Wang 2011; Jiao et al. 2011; Waleska et al. 2011;
Castaneda and Ducrot 2009; Durieux et al. 2007; Grenier et al. 2007; Touzi, Deschamps,
and Rother 2007; Wright and Gallant 2007; Li and Chen 2005; Racine, Bernier, and
Ouarda 2005; Bernier et al. 2003).

5.2. Radarsat-2 data analysis

HVand HH backscatter intensity was extracted at field validation locations for upland, fen,
bog, marsh, and swamp at all four wetland study areas and for all incidence angles (ranging
from steep to shallow (18.4º to 48.0º, respectively)). An assessment of season was con-
ducted where data were available. As an example of the differences between wetland as a
generalized class and upland, Figure 5 shows a comparison for the spring and summer
steep-incidence angle 2010 Marlborough Radarsat-2 imagery. It can be seen that there is
better distinction between wetland and upland in spring as compared with summer. This is
not surprising as the greater coverage of standing water following snow melt in spring
would be expected to contribute to higher backscatter from vegetation–water double-bounce
interactions (Touzi et al. 2004; McNairn et al. 2002; Boerner et al. 1998; Evans et al. 1988).

Given that spring imagery was determined to discriminate wetlands from upland
better than summer imagery, the next step was to evaluate incidence angle in wetlands
for which steep and shallow spring imagery were available. Figure 6 shows that in
Marlborough there is greater overlap between classes at shallower incidence angles
(Figure 6(b)) than at steeper angles (Figure 6(a)). Bog was not included in this analysis
as it was not present in Marlborough. However, as can be seen in Figure 7 with summer
imagery for Mer Bleue, there is also greater overlap in the shallower-incidence angle
imagery (Figure 7(b)) than at steeper angles (Figure 7(a)) (comparison is completed with

Table 3. Error matrix and accuracy statistics for the spring 2010 Loch Garry object-based CTA.

Reference samples

Classified samples Water Upland Fen Swamp Marsh Total

Water 5 0 0 0 0 5
Upland 0 13 0 0 0 13
Fen 0 0 4 0 0 4
Swamp 0 3 1 7 1 12
Marsh 0 0 0 0 3 3
Total 5 16 5 7 4 37

PA/UA (%) Average (%)

Overall accuracy (%): 86.5 100.0/ 81.3/ 80.0/ 100.0/ 75.0/ 87.3/
Overall κ: 0.82 100.0 100.0 100.0 58.3 100.0 91.7
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Figure 5. Marlborough 2010 steep-incidence angle Radarsat-2 backscatter for upland (green) and
wetland (yellow) for (a) spring and (b) summer.

Figure 6. Marlborough spring 2010 Radarsat-2 backscatter for fen (green), marsh (yellow), and
swamp (purple) at (a) steep (18.4–20.4°) and (b) shallow (46.8–48.0°) incidence angles.

Figure 7. Mer Bleue summer 2010 Radarsat-2 backscatter for bog (blue) and marsh (yellow) at
(a) steep (25.7–27.6°) and (b) shallow (46.0–47.2°) incidence angles.
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summer imagery as spring shallow imagery was not acquired). In the literature, steep-
incidence angle imagery has been found to be best for differentiation between wetland
vegetation types, particularly when vegetated areas are flooded, as there is increased
backscatter at steep angles due to trunk–water double-bounce scattering and volume
scattering among branches and other vegetation, such as reeds and grasses (Lu and
Kwoun 2008; Baghdadi et al. 2001; Leckie and Ranson 1998). This was confirmed in
this study as a result of differences in the vegetation structure. In spring, fens are
typically comprised of short grass and sedge meadows with little water visibility to the
radar pulse. Marshes typically had short, young, green growth as well as senescent,
broken and horizontally lying (from snow load) reeds, which masked some of the
standing water. Swamps were generally more open with large flooded areas and, where
deciduous trees were present, they were either dead or their leaves had not yet flushed.

From the above, spring steep-angle imagery was determined to best distinguish the
wetland classes. Analysis of wetland class discrimination was then conducted across all
four study areas. Figure 8 shows spring steep-incidence angle backscatter values for all
wetland types across all areas. Pairs of wetland types are displayed in separate graphs to

Figure 8. Spring 2010 Radarsat-2 backscatter for fen (green), marsh (yellow), swamp (purple),
and bog (blue) at steep (18.4–27.6°) incidence angles with (a) marsh compared to swamp; (b)
marsh compared to fen; and (c) fen compared to bog. Data are combined over all wetland study
areas where the given classes were present.
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allow clear comparisons; in the following discussion, refer to Figure 2(a)–(d) for visual
representations of typical conditions for each wetland class. Swamp is distinct, for exam-
ple, from marsh (Figure 8(a)) due to increased volume scattering in bare tree canopies and
increased double-bounce scattering from bare trunks/branches and surrounding water.
There would also be increased depolarization of the signal in swamp due to these multiple
scattering interactions. There is more overlap between marsh and fen (Figure 8(b)), as
expected, based upon the similarities in their vegetation structure (sedges, reeds, etc.). The
most overlap is apparent for bog and fen (Figure 8(c)), which have the most similar types
of vegetation. In the literature, bog has typically been shown to have lower HH backscatter
than fen (e.g. in spring and summer, Radarsat-1, C-band imagery; e.g. Li and Chen 2005);
however, in this study the vegetation composition and structure in bogs and fens were
sufficiently similar to result in similar scattering properties at C-Band. Both had short
vegetation with smooth canopies, albeit at bogs vegetation was mostly comprised of small
bushes (Figure 2(a)) while fens were typically grassy meadows (Figure 2(b)). For this
measurement and observation scale, configuration, and season, the differences between
these types of canopies may be negligible with respect to C-band radar.

Among all study areas, the best separation between wetland type classes based upon
backscatter was found using spring steep-angle imagery, and this concurs with most of
the literature (e.g. Lu and Kwoun 2008; Baghdadi et al. 2001; Leckie and Ranson 1998).
However, the high degree of overlap in backscatter between classes resulted in relatively
poor overall CTA accuracies (40% at Westport to 65.0% at Loch Garry) when HH and
HV backscatter intensities were used as the only input variables. The addition of HH and
HV backscatter to the optical imagery spectral band brightness and DEM did not
improve overall accuracies and caused large areas to be erroneously classified. For
example, in Mer Bleue, large areas of the bog that were correctly classified using the
optical/DEM data alone were erroneously classified as marsh when HH and HV back-
scatter were added as inputs; in Marlborough, large areas of various land cover types
were erroneously classified as fen (e.g. Figure 9(b)) when backscatter was added.

Table 5 provides the classification accuracies for the four study areas as derived from
spring WorldView-2, DEM, and spring steep-angle HH and HV backscatter data. The only
class that showed improvement over all areas with the addition of HH and HV backscatter
was swamp. Figure 9 provides a visual comparison of the Marlborough classifications,
without (Figure 9(a)) and with (Figure 9(b)) HH and HV backscatter data as additional
inputs. In the black circle of Figure 9(b), detail is lacking in an over-classified fen area.
Figure 9(a) also over-estimates the amount of fen present there, but there is some detail
representing the other classes. The red circle in Figure 9(b) shows an erroneously classified
marsh that was correctly classified as fen in Figure 9(a). Despite these poorer results when
radar backscatter was added as an input, Figure 9(b) shows better linear detail between
farm fields in the northeastern corner, probably due to surface scattering within the bare
fields in spring as compared with hedgerows between the fields with potential volume
scattering and/or double-bounce scattering between the adjacent field and the woody
hedgerow vegetation. Figure 9(b) also shows riverine marsh vegetation (blue circle) that
represents a known creek (Steven’s Creek) that is not as distinct in Figure 9(a).

5.2.1. Integration of radar decomposition parameters in Wetland classification

Cloude–Pottier entropy, anisotropy, and alpha components were derived from the spring
steep-incidence angle Radarsat-2 imagery for all four study areas and used in object-
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based CTA wetland type classifications alone, and with the optical and DEM data. The
results for the Marlborough wetland complex are presented here as an example.
Figure 10(a) shows the spring WorldView-2 CIR composite and Figure 10(b)–(d)
shows the three CP components. It can be seen in the entropy image that low values
(e.g. certain fields as in the red circle) indicate that there was no significant mixing of
scattering mechanisms, low depolarization, and a low degree of randomness, all typical
of a relatively smooth surface.

Alpha identifies the dominant scattering mechanism and, as expected, low values (dark
areas in the alpha image) occurred for water bodies (small ponds, red circles) indicating
surface scattering. The brighter areas (red arrows) indicate double-bounce and volume
scattering contributions. These areas are fen and mixed swamp, along with marsh. Fen
typically had mostly surface scattering from the uniform grass and sedge cover but in the
spring there were some contributions from double-bounce scattering due to the presence of
run-off surface waters. Swamp in this area included significant proportions of dead con-
iferous and leaf-off deciduous trees, and therefore volume and double-bounce scattering
would be expected, resulting in high alpha values and bright tones in the alpha image.

Anisotropy provides an indication of the mixing between the second and third scatter-
ing mechanisms, higher values (e.g. within the red circles) indicating that the second
mechanism is dominant, which could relate again to the presence of water and stronger
double-bounce scattering in the spring. However, in general the anisotropy image shows
that two secondary mechanisms are mixed in about equal proportions (lower values).

Table 6 provides the overall classification accuracy results for the four study areas
derived from the combined WorldView-2, DEM, and CP variables as inputs. The fen

Figure 9. 2010 WorldView-2 CIR composite (a) and comparison of object-based CTA wetland
classifications for the Marlborough study area using (b) spring WorldView-2 optical imagery and
DEM; and (c) spring WorldView-2 optical imagery, DEM, and spring steep angle HH and HV
backscatter images. Black circle shows over-classified fen. Red circle shows misclassified marsh.
Blue circle shows well-delineated riverine feature.
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class showed improvement with the addition of the CP variables at both study areas that
contained fen. Table 7 provides a comparison summary of the average accuracies for
each of the classification combinations; the best results averaged across all three combi-
nations are highlighted in orange.

6. Discussion

This research found that object-based classification of wetland types benefitted from the
complementary information in high-resolution optical and polarimetric radar data.
Certain wetland classes were better discriminated using these combined data types than
using either optical or radar data alone.

Figure 10. 2010 WorldView-2 CIR composite (a) and values of CP variables of (b) entropy, (c)
alpha, and (d) anisotropy derived from 2010 spring steep-incidence angle Marlborough Radarsat-2
imagery. Red arrows and red circles denote examples of low and high values, respectively, of the
CP variables.
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In evaluation of spring and summer C-band Radarsat-2 imagery at various incidence
angles, steep-angle leaf-off spring imagery from March and April provided the best
discrimination between swamp and other wetland types of marsh and fen. The swamp
areas at Loch Garry were comprised of dead coniferous trees, while at Marlborough,
many of the swamp areas were hardwood dominated. In spring, dead coniferous trees and
leaf-off deciduous trees surrounded by standing water produced strong trunk-water
double-bounce scattering along with volume scattering from crown branches and new
understorey vegetation growth. This resulted in high backscatter, making them more
distinct with the addition of backscatter in the classification than for the optical imagery
alone. Kandus et al. (2001) found that leaf-off imagery (May and August in Argentina)
best distinguished types of forest, marshes, and rushes. Lang, Townsend, and Kasischke
(2008) found better discrimination for flooded forest during the leaf-off period in North
Carolina.

Steep (18.4–27.6°) incidence angle HH and HV images showed better separation
between wetland type classes than shallow (46.8–48.0°)-incidence angle HH and HV
images. This is because for swamps and treed bogs, there was increased penetration at
steep angles, increased volume scattering from branches within crowns, and double-
bounce scattering between bare trunks and the water surface (particularly for swamps),
resulting in increased depolarization of the signal. This concurs with the majority of the
literature that has found that detection of flooded vegetation is better achieved with
steep-incidence angle imagery (Westra et al. 2010; Li et al. 2007; McNairn et al. 2002;
Baghdadi et al. 2001; Raney 1998).

Individual class accuracies for swamp improved using the combination of spring
steep HH and HV images with the high-resolution WorldView-2 optical imagery at two
of the four study areas (Loch Garry and Marlborough), and for bog at one study area
(Westport). HH has often been shown to be sensitive to vegetation structure in a variety
of studies with different radar sensors and locations, and for other non-wetland vegeta-
tion (such as agricultural vegetation) (Schmitt and Brisco 2013; Lang and Kasischke
2008; Pope et al. 1997).

Combining the CP variables derived from the steep-incidence angle radar imagery
with optical imagery and a DEM did not increase overall accuracies over those obtained
with optical/DEM data alone, with the exception of the fen class at Loch Garry and
Marlborough. Scattering for fen is expected to be mostly surface scattering, with small
contributions from volume scattering in shrub vegetation and double-bounce scattering
where there are sporadic trees (e.g. tamarack in the Loch Garry fen) and open water and/
or standing surface water. The fens at Marlborough were mostly grassy meadows. In the
literature, it was found that CP components could distinguish between classes such as
upland, wetland, forest, and shrub (Sartori et al. 2011) or that higher alpha values showed
more double-bounce scattering in flooded vegetation compared with lower alpha values
in non-flooded areas. In an alpha range of +20 to –20°, higher positive results (+14 to
+20°) related to double-bounce, and lower negative results (–4 to –20°) related to surface
scattering (Schmitt and Brisco 2013). In most of the wetlands of this study, surface
scattering resulted in lower negative values.

The importance of optimal segmentation parameter selection is an ongoing aspect of
interest in research using OBIA (Kloiber et al. 2015; Dronova et al. 2012; Dragut, Tiede,
and Levick 2010; Marpu et al. 2010). As many studies utilize eCognition software to
segment objects, additional, supportive evidence of the ‘correct’ scale (shape and com-
pactness) values for particular imagery types is important. However, the choice of scale
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parameter value is highly dependent upon the importance of particular features to the
research, is related to the spatial resolution and spectral quality of the imagery being
used, and is specific to eCognition (i.e. it is not easily generalized to other region-
growing segmentation algorithms). Optimal segmentation of wetland types using
WorldView-2 imagery and a DEM was achieved with a scale value of 45. This is similar
to other wetland studies that used eCognition-based OBIA applied to high-resolution
optical imagery. Examples include Dissanska, Bernier, and Payette (2009) using
Quickbird imagery with a scale parameter value of 50, and Wang, Wang, and Zhou
(2011) using IKONOS imagery and scale parameter values of 20 and 25.

6.1. Limitations and further research

The greatest overall limitation to this research was the size of the reference data set obtained
in the field that was used for training and validation. The four wetland complexes were
spatially dispersed and challenging to access. This, combined with the object-based classi-
fication approach, where a single area of a given wetland type can serve as only one sample
value, resulted in low reference sample numbers. However, each sample spatially repre-
sented a much larger spatial extent (i.e. the extent of the segmented object) than would be
represented by a single pixel in pixel-based classification, meaning there was spatially more
information content within a given object reference sample than would be available using
single pixel samples. Additionally, the individual site size was selected to represent 3 × 3
Landsat pixels as Landsat 5 TM data were used in the broader study described in Dingle
Robertson (2014). In development of the fieldwork plan, all validation data requirements
had to be weighed and the choice was made to visit field sites that could be utilized with all
image data over visiting smaller individual sites for some of the data. Although the accuracy
assessments were more comparable as the same samples were used for each data type,
additional smaller validation sites would have allowed greater confidence in results from
individual data types, such as the WorldView-2 imagery.

This research showed that there was variability in classifications of the wetland
attributes that were specific to each wetland complex. This would not have been apparent
with only one or two study areas: i.e. selection of the four different wetland complexes
for this study was crucial in characterizing differences in ecology and vegetation
composition and structure between the areas which resulted in different classification
outcomes. In such research studies, a balance is necessary between the need for com-
prehensive validation sets and understanding of spatial differences across regions, but it
is difficult to recommend a specific proportion for each.

Further research should incorporate a classification methodology (e.g. Random Forest
(RF)) that determines the importance of the input optical and polarimetric radar variables to
the overall classification. However, the drawback to simply using all the variables together
is that there is a lack of understanding of the improvement or decline that each individual
variable may cause, as was shown in this research. Additionally, in the determination of
important data inputs RF can give the same (or higher) priority to highly correlated data
(e.g. prioritizing them first) rather than ignoring correlated data, and shifting the prioritiza-
tion to the other variables (Millard and Richardson 2013). Another potential benefit of a
technique such as RF would be to offset the limitation of the small reference data set. By
repeatedly parsing the reference set to different validation and training sets, the need for a
large reference set is mitigated. This is important for areas such as wetlands where field
access is difficult at best, and in many cases not possible.
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7. Conclusions

The hypothesis of the research was that high-resolution spring season optical imagery,
combined with a DEM and polarimetric radar image variables in OBIA, would provide
improved discrimination of wetland classes over use of either optical/DEM or radar data
alone. In determining the optimal radar data for classification, it was found that spring
was better than summer season and that steep incidence angles were better than shallow
incidence angles. Overall classification accuracy did not improve with the addition of the
radar backscatter intensity and Cloude–Pottier decomposition variables to the optical/
DEM data, but there was an improvement in specific wetland type classes of swamp,
bog, and fen in some wetland complexes.
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